Генератор холодной плазмы. Холодная плазма навсегда избавит людей от незаживающих ран Генератор холодной плазмы

Ещё никогда управление кондиционером не было так доступно.
В любом месте. С мобильного телефона

Забыли выключить кондиционер?

Уехали в отпуск или на дачу и забыли выключить кондиционер? Не стоит расстраиваться! Сэкономить электроэнергию и выключить Ballu iGreen можно с помощью мобильного приложения. Вам только нужно подключить мобильный к мобильному Интернету.

И дома еще ждать пока станет прохладно?…

Революционная технология управления Ballu iGreen через мобильное приложение поможет Вам заранее включить кондиционер и создать комфортную температуру к вашему приезду. Ваш дом и Ballu iGreen всегда встретят Вас приятной прохладой и свежим воздухом.

Не согласны с выбранной температурой?

Не спорьте с семьей из-за пульта или режима работы кондиционера – все что Вам нужно есть у Вас в мобильном приложении. Выберите комфортную температуру, поменяйте направление движения воздуха, установите таймер или режим работы когда захотите с Ballu iGreen.

Потерялся пульт?

Пожалуй ничто так не теряется дома как пульт. Кто-то забыл его на балконе или в кармане брюк? Или завалился в щель дивана? Или ребенок утащил в детскую да еще и потерялись батарейки? Не тратьте усилия и время – включите или выключите кондиционер прямо с мобильного телефона. Ballu iGreen всегда на связи. А пульт обязательно найдется, потом. В самом неожиданном месте.

Мобильное управление кондиционером

Cloud Air Con

Приложение для мобильных устройств управляет вашими кондиционерами из любой точки мира

Просто подключить!

Шаг 1 из 6

Добро пожаловать в мир инновационных технологий!

Стартовый экран мобильного приложения Cloud Air Con.

Введите пароль указанный в инструкции или считайте QR-код в специальном окошке приложения для активации программы.

Шаг 3 из 6

Нажмите «добавить устройство» и введите название домашней Wi-Fi сети и пароль к ней. Нажмите «Начало настройки конфигурации». Программа сама подключит кондиционер к мобильному устройству.

Шаг 4 из 6

В свойствах подключенного по Wi-Fi Ballu iGreen Вы можете указать «Имя» кондиционера, изменить уровень доступа к кондиционеру, заблокировав возможность управления им с других мобильных устройств, и увидеть MAC-адрес подключенного прибора.

Обнаружили, что облучение клеток холодной плазмой приводит к их регенерации и "омоложению". Этот результат, считают исследователи, может быть использован при разработке курса плазменной терапии незаживающих ран.

Незаживающие раны - настоящая проблема для медиков, так как они осложняют любое даже самое успешное лечение. Например, при раны возникают из-за повреждённых болезнью сосудов, при и — из-за подавленного иммунитета, а в пожилом возрасте причиной является низкая скорость деления клеток. Лечение таких ран обычными методами очень проблематично, а иногда просто невозможно.

Оказалось, что решить проблему может холодная плазма атмосферного давления. Она представляет собой частично ионизированный газ (доля заряженных частиц в газе составляет около 1%) с температурой ниже 100 тысяч кельвинов. Её применение в области биологии и медицины стало возможным с момента появления генераторов, производящих плазму при температуре 30-40 °C.

Кондиционирования воздуха возникает вопрос: как понять, работает ионизатор или холодная плазма в их кондиционере, и где эти устройства можно найти? Где в кондиционере расположены фильтры знает каждый. Открываете лицевую панель внутреннего блока — и перед вами.


А вот где находится «мифическая» или ионизатор остается большим вопросом, а уж то как они работают и в чем между ними разница - это вообще загадка века. На самом деле все просто: ионизатор и генератор плазмы представляют собой блочок, к которому подводится питание и который крепится непосредственно на теплообменник. В частности у TOSOT генератор плазмы находится в правом верхнем углу теплообменника за лицевой панелью под фильтром, но если их снять, то генератор можно легко обнаружить.

Остается вопрос: как работают ионизатор и холодная плазма? Позволю себе немного теории.

Ионизатор

Пыль в воздухе вокруг ионизатора заряжается, образуя в целом неблагоприятные для здоровья тяжелые ионы. Эти заряженные частички движутся по направлению силовых линий - от ионизатора к ближайшей поверхности (стены, пол, потолок, батареи), в зависимости от места расположения прибора. Через некоторое время вся эта пыль оседает на поверхности и можно спокойно дышать воздухом, насыщенным лёгкими ионами.

Холодная плазма

Является одним из наиболее эффективных видов ионизаторов. Активные ионы водорода и кислорода вырабатываются для соединения в воздухе с бактериями, вирусами, пылью и другими вредными веществами. Связанные вместе, они оседают на поверхности и с конденсатом удаляются из кондиционера.

Сравнительная таблица холодной плазмы и ионизатора

Плазма Ионизатор
Вырабатывает как отрицательные ионы, так и положительные ионы, при этом препятствует образованию магнитного поля. Вырабатывает отрицательные ионы, воздух становится более свежим, но при этом способствует образованию магнитного поля.
Ультрафиолетовое излучение очищает воздух, проходящий через теплообменник кондиционера, нейтрализуя бактерии и неприятный запах. Не имеет ультрафиолетового излучения.
Не требует установки дополнительных фильтров так, как вредные бактерии выводятся с конденсатом. Не решает проблему очистки воздуха, поэтому применение дополнительных фильтров возможно.
Вредные бактерии выводятся с конденсатом, поэтому не вызывает оседание пыли по всему помещению. Воздействие отрицательных ионов на пыль в помещении заставляет оседать её на все предметы, находящиеся в помещении.

Холодная плазма и ионизатор выполняют, по сути, родственные функции, однако плазму можно назвать следующей ступенью эволюции ионизатора. Она не только насыщает воздух помещения активными ионами, но еще и с высокой степенью очистки удаляет из него все вредные вещества.

Электрический разряд является одним из способов генерации химически активных частиц . Больше всего электрический разряд используется для получения озона . Однако озон является селективным окислителем, есть много соединений, которые практически не взаимодействуют с озоном.

Поэтому представляет большой интерес генерирование универсальных высоко активных окислителей, к числу которых относятся гидроксильные радикалы. Гидроксильные радикалы с большой вероятностью гибнут во взаимодействиях между собой на месте образования. В работе найдены условия, при которых время жизни радикалов составляет ~ 1 сек. Этого времени достаточно, чтобы извлечь радикалы из разрядной камеры с эффективностью порядка 50% и осуществить контактирование с обрабатываемой жидкостью. Наличие в числе активных частиц гидроксильных радикалов принципиально меняет ход окислительных процессов в жидкости, так как радикалы инициируют цепные реакции. Поддержание цепных процессов в обработанной жидкости позволяет, несмотря на малый абсолютный выход радикалов, получить результаты, недостижимые с помощью озонирования. В данной работе рассмотрены конструктивные особенности прибора, реализующего принципы генерации активных частиц, предложенные в обзоре и патентах .

Холодная плазма вспышечного коронного электрического разряда при отрицательной полярности высокого напряжения на разрядном электроде образуется в области высокой напряжённости электрического поля. Если выбрать рабочее напряжение, обеспечивающее начало образования лавин, и ограничивать ток в разрядной цепи, то на электроде возникают импульсы Тричела . При образовании лавины ток в цепи начинает возрастать. Ограничение тока на балластном резисторе приводит к падению высокого напряжения, которое уменьшается ниже порога образования лавины. При этом ток разряда падает и напряжение снова повышается. Образуются импульсы тока амплитудой ~ 200 мА, следующие с частотой ~ 100 кГц. Длительность импульса порядка 0,1 мкс. Напряжённость электрического поля при возникновении импульсов Тричела достигает 300 кВ/см .

разряд происходит на воздухе в присутствии паров воды, то образуются

первичные активные частицы: озон, радикалы ОН* и Н*.

Рисунок 4. Эскиз генератора. 1 - источник питания; 2 - изолятор; 3 - разрядные электроды; 4 - заземлённый электрод; 5 - обрабатываемая вода; 6 - слив обработанной воды; 7 - эжектор; 8 - трубка вывода активных частиц; 9 - трубка подачи свежего воздуха или кислорода.

Эскиз генератора представлен на рис. 4. Прибор состоит из корпуса, в котором находится обрабатываемая вода 5, разрядные электроды 3 и заземлённый электрод 4. Разрядные электроды закреплены во фторопластовом изоляторе 2 толщиной 5 мм. На каждый разрядный электрод

3 через RC-цепочку подаётся высокое напряжение 11 кВ отрицательной полярности от источника питания 1. RC-цепочка (R = 20 МоМ, 6 шт по 3,3 МоМ типа С2-33м, 1 Вт; C = 34 пф, последовательно 2 шт 68 пф, 6,3 кВ типа К15-5) используется для формирования разряда требуемого типа. Источник питания представляет собой генератор тока, обеспечивающий в рабочем режиме (V = - 11 кВ, I = 4 мА) динамическое выходное сопротивление 0,5 МоМ.

Вспышечный коронный электрический разряд возникает между разрядными электродами 3 и заземлённым электродом 4. Ток разряда с каждого электрода 70 - 100 мкА. Величина разрядного промежутка 6 мм. Для того, чтобы обеспечить концентрацию поля на каждом электроде, расстояние между электродами должно составлять не менее 25 мм, длина каждого электрода не менее 25 мм. Диаметр разрядных электродов 2 мм. Материал электродов - проволока из нержавеющей стали. Электроды специально не затачивались, достаточно острия, возникающего на краях при обрезании проволоки. Фотография разряда, образующегося между электродами 3 - 4 внутри камеры генератора, приведена на рисунке 5.

Рисунок 5. Вид разряда в камере генератора.

Изобретение относится к области газоразрядной очистки газов и предназначено для использования в жилых и производственных помещениях.

Известна установка для очистки газов (патент РФ №40013, 31.05.2004 г.), содержащая корпус, внутри которого выполнены отсеки, в каждом из которых установлены электроды, образующие разрядные пары, при этом один из электродов размещен внутри слоя стекла, а второй электрод выполнен в виде сетки из проволоки, на которой перпендикулярно расположены шипы.

Данная установка и ее газоразрядный блок обеспечивают очистку газов, воздушных выбросов пищевых, промышленных и других предприятий от вредных и дурно пахнущих газообразных веществ и паров. Однако стекло для размещения в нем электрода и сам электрод имеют разные коэффициенты теплового расширения, что в процессе эксплуатации при увеличении до рабочей температуры и выше может привести к растрескиванию изоляционного материала и разрушению электрода внутри него, что в итоге снижает надежность работы установки и уменьшает срок ее службы. К тому же шипы, присоединенные к сетке электрода методом контактной сварки, имеют тенденцию к отсоединению от нее при воздействии агрессивных веществ, которые зачастую и требуется устранить из очищаемой воздушной смеси. Данное явление также приводит к нарушению режима работы устройства и снижению срока его службы.

Известен газоразрядный блок установки для очистки газов (патент РФ №144629, 17.01.2014 г.), содержащий корпус, внутри которого расположены электроды, образующие разрядные пары и выполненные плоскими, при этом один из электродов, размещенный внутри слоя стекла, выполнен в виде плоского сплошного или перфорированного металлического листа, или из зигзагообразно изогнутой металлической проволоки, другой электрод выполнен металлическим с щелевидными отверстиями со штырьками вдоль каждого отверстия, также корпус и электроды имеют имеющие различные выступы, язычки, зубья и прочие конструктивные элементы для закрепления деталей в корпусе.

Наличие большого количества различных конструктивных элементов усложняет конструкцию, снижает технологичность разработки и уменьшает ее надежность. Расположение металлического электрода в слое стекла приводит к возможному растрескиванию стекла и разрушению электрода при воздействии повышенных температур, что снижает надежность работы установки. Применение электрода, заготовкой для которого служит сплошной металлический лист, подразумевает большую суммарную площадь поверхностей данного электрода, находящихся под высоким напряжением. В процессе работы устройства на указанные поверхности возможно осаждение пыли, взвеси и других твердых частиц, что вызывает ухудшение работы устройства, снижение его надежности и ресурса. Также при определенном составе и конфигурации пылевого слоя возможно его воспламенение под воздействием высоковольтных разрядов.

Известен газоразрядный блок (патент РФ №2453376, 06.03.2009 г.), принятый за наиболее близкий аналог к заявляемому решению, содержащий корпус, один электрод в виде пластины из стекла или керамики, внутри которой размещен проводник в виде металлической сетки или металлической пластины с тоководом, второй электрод выполнен в виде металлической сетки из проволоки с перпендикулярно размещенными на ней шипами, при этом поле пластины из стекла с размещенным тоководом имеет многоугольный или криволинейный, например треугольный выступ.

Наличие многоугольного, например треугольного выступа, вследствие удаления неизолированного электрода от токовода позволяет уменьшить вероятность пробоя пластины и тем самым повысить надежность установки. Однако использование в качестве материалов электродов материалов с разными коэффициентами теплового расширения приводит в итоге к недостаточной надежности устройства и снижению срока службы устройства. Также наличие шипов, как было рассмотрено выше, приводит к нарушению режима работы устройства и снижению срока его службы.

Техническим результатом изобретения является повышение надежности работы установки для очистки газов за счет обеспечения равномерной тепловой и электромагнитной нагрузки на элементы изолированного электрода при эксплуатации.

Технический результат достигается использованием генератора холодной плазмы, содержащего корпус, изолированный электрод в виде пластины из изоляционного материала с расположенным внутри металлическим проводником и тоководом, неизолированный электрод в виде металлической решетки, расположенный между изолированными электродами, при этом неизолированный электрод имеет углубление, расположенное напротив токовода изолированного электрода, изоляционный материал изолированного электрода имеет коэффициент теплового расширения, близкий к коэффициенту теплового решения металлического проводника, металлическая решетка неизолированного электрода состоит из горизонтальных проволок, между которыми расположены вертикальные проволоки с выступами и впадинами, причем выступы каждой последующей вертикальной проволоки расположены напротив впадин предыдущей вертикальной проволоки, плоскости, содержащие выступы крайних вертикальных проволок, расположены под углом от 15 до 60 градусов к плоскости неизолированного электрода.

Металлический проводник внутри пластины изолированного электрода может быть выполнен в виде сетчатой или перфорированной решетки.

Коэффициенты теплового расширения изоляционной пластины изолированного электрода и металлического проводника отличаются не более чем на 20%.

Пластина изолированного электрода имеет треугольный выступ в верхней части.

Углубление неизолированного электрода может быть выполнено в его верхней части и иметь форму полукруга.

Наличие корпуса, изолированного электрода в виде пластины из изоляционного материала с расположенным внутри металлическим проводником и тоководом, неизолированного электрода в виде металлической решетки, расположенного между изолированными электродами, выполнение углубления на неизолированном электроде, расположенного напротив токовода изолированного электрода, использование изоляционного материала изолированного электрода с коэффициентом теплового расширения, близкого к коэффициенту теплового решения металлического проводника, выполнение металлической решетки неизолированного электрода из горизонтальных проволок, между которыми расположены вертикальные проволоки с выступами и впадинами, чередующимися у смежных вертикальных проволок, расположение плоскостей с выступами крайних вертикальных проволок под углом от 15 до 60 градусов к плоскости неизолированного электрода позволяет обеспечить равномерное расширение изоляционного материала изолированного электрода и металлического проводника внутри слоя изоляционного материала при рабочих температурах, также равномерное распределение электростатического и электромагнитного полей между изолированным и неизолированным электродами, что снижает вероятность разрушения элементов изолированного электрода, повышая ресурс генератора холодной плазмы, надежность и эффективность его работы.

На фиг. 1 приведен вид сверху заявляемого генератора холодной плазмы, на фиг. 2 приведен вид сбоку заявляемого генератора, на фиг. 3 изображен изолированный электрод с расположенным внутри металлическим проводником и тоководом, на фиг. 4а изображен вид спереди неизолированного электрода, на фиг. 4б - вид сбоку того же электрода, на фиг. 4в - вид сверху того же электрода.

Согласно фиг. 1, 2 генератор холодной плазмы содержит корпус 1, изолированный электрод 2 в виде пластины 3 из изоляционного материала с расположенным внутри металлическим проводником 4 и тоководом 5, неизолированный электрод 6 в виде металлической решетки 7, расположенный между изолированными электродами 2, при этом неизолированный электрод 6 имеет углубление 7, расположенное напротив токовода 5 изолированного электрода 2, изоляционный материал изолированного электрода 3 имеет коэффициент теплового расширения, близкий к коэффициенту теплового решения металлического проводника 4, металлическая решетка 8 неизолированного электрода 6 состоит из горизонтальных проволок 9, между которыми расположены вертикальные проволоки 10 с выступами 11 и впадинами 12, причем выступы 11 каждой последующей вертикальной проволоки 10 расположены напротив впадин 12 предыдущей вертикальной проволоки 10, плоскости, содержащие выступы крайних вертикальных проволок 10, расположены под углом от 15 до 60 градусов к плоскости неизолированного электрода 6.

Пластина 3 изолированного электрода 2 может быть выполнена из изоляционного материала, имеющего коэффициент теплового расширения, отличающийся от материала металлического проводника 4 не более чем на 20%. В качестве материала металлического проводника 4 могут быть использованы, например, ферритные нержавеющие стали. В качестве изоляционного материала пластины 3 могут быть использованы, например, полимерные составы и составы на основе кремния и кремнийорганики, боросиликатные стекла пирекс.

Малая (не более 20%) разница в коэффициентах теплового расширения изоляционного материала пластины 3 и металлического проводника 4 приводит к их практически равномерному расширению, что не позволяет создать на пластине 3 напряжения, способные вызвать растрескивание изоляционного материала и, в целом, разрушение изолированного электрода 2 при нагреве до рабочей температуры и выше, что повышает ресурс и надежность работы заявляемого устройства.

При этом пластина 3 изолированного электрода 2 имеет треугольный выступ в верхней части (фиг. 3). Выбор такой формы пластины 3 является наиболее технологичным и наименее материалоемким решением. При этом удаление неизолированного электрода от токовода позволяет уменьшить вероятность пробоя пластины и тем самым также способствует повышению надежности генератора.

Металлический проводник 4 внутри пластины 3 изолированного электрода 2 может быть выполнен в виде сетчатой или перфорированной решетки.

Для обеспечения передачи напряжения на металлический проводник 4, расположенный внутри пластины 3, изолированный электрод 2 имеет токовод 5, который может быть выполнен из моножильной или многожильной проволоки, при этом контакт токовода 5 с проводником 4 может быть обеспечен механическим соединением, пайкой или сваркой.

Свободное от проводника 4 и токовода 5 поле пластины 3 по ее периметру имеет ширину X от кромки пластины до проводника 4, составляющую от 0,081 до 1 ширины Y самой пластины 3 (фиг. 3).

Указанный разброс значений позволяет применять для работы заявляемого устройства источники питания с различным выходным напряжением. В данном случае выполняется условие: чем выше напряжение, тем шире должно быть поле изолированного электрода 2, свободное от проводника 4.

На фиг. 4 приведен неизолированный электрод в трех проекциях. Неизолированный электрод 6 представляет собой сварную или монолитную металлическую решетку 8, состоящую из горизонтальных проволок 9 и расположенных между ними вертикальных проволок 10 с выступами 11 и впадинами 12. Чередование выступов 11 впадин 12 представляют собой треугольники, что в итоге позволяет получить зигзагообразную форму вертикальной проволоки 10 (фиг. 4а). На горизонтальной проволоке 9 вертикальные проволоки 10 располагаются таким образом, чтобы выступы 11 каждой последующей вертикальной проволоки 10 расположены напротив впадин 12 предыдущей вертикальной проволоки 10. При этом при приближении к верхней и нижней горизонтальным проволокам 9 высота выступов 11 и впадин 12 становится меньше, то есть вертикальная проволока 10 выпрямляется по мере приближения к горизонтальным проволокам 9 (фиг. 4б).

Металлическая решетка 8 из зигзагообразных проволок позволяет получить наиболее равномерное распределение электростатического и электромагнитного полей между изолированным 2 и неизолированным 6 электродами, что в свою очередь обеспечивает максимально устойчивые во времени разряды с мест перегиба проволок металлической решетки 8 на изолированный электрод 2, тем самым увеличивая его ресурс. За счет того, что точки выхода разрядов могут несколько смещаться от мест перегиба проволок металлической решетки 8, происходит саморегулирование режима работы разрядов, нагрузка на изолированный электрод 2 становится равномерной по площади, что в итоге позволяет повысить надежность работы устройства.

Плоскости, содержащие выступы 11 крайних вертикальных проволок 10, расположены под углом от 15 до 60 градусов к плоскости металлической решетки 8 (фиг. 4в).

Поворот крайних вертикальных проволок 10 на угол 15-60 градусов увеличивает расстояние от мест перегиба указанных проволок до изолированных электродов 2, тем самым снижая нагрузку на края изолированных электродов 2, что также обеспечивает равномерность распределения электростатического и электромагнитного полей, повышая надежность работы устройства. По указанной причине вертикальная проволока 10 постепенно выпрямляется по мере приближения к горизонтальным проволокам 9, как было рассмотрено выше.

Следует отметить также, что все зигзагообразные проволоки в металлической решетке 8 выполняются одинаковыми, что делает изделие технологичным в производстве.

Неизолированный электрод 6 также имеет углубление 7, например, полукруглой формы, выполненное в верхней части электрода 6 и расположенное напротив токовода 5 изолированного электрода 2.

Выполнение углубления 8 подобным образом позволяет увеличить расстояние то ближайшей неизолированной точки токовода 5 до неизолированного электрода 6, что исключает пробой между ними, повышая ресурс и надежность работы устройства.

В корпус 1 генератора в предусмотренные посадочные места устанавливаются изолированные электроды 2, между которыми располагаются неизолированные электроды 6, жестко скрепленные с корпусом 1, например, с помощью сварки. Неизолированные электроды, расположенные по краям устройства и имеющие только по одному соседнему изолированному электроду, отдалены от этих изолированных электродов на расстояние большее, чем расстояние между электродами в центре устройства.

Заявляемый генератор холодной плазмы работает следующим образом. На изолированный электрод 2 (по тоководу 5 и металлическому проводнику 4) и неизолированный электрод 5 газоразрядной пары подают высокое напряжение с получением между ними барьерных разрядов. В промежутке между зигзагообразной металлической решеткой неизолированного электрода 6 и поверхностью пластины 3 изолированного электрода 2 образуется область с холодной плазмой, которая реагирует с очищаемыми газами, проходящими между указанными электродами 2 и 6. В результате химических реакций молекулы очищаемых газов делятся на активные ионы, свободные радикалы с образованием активного кислорода и озона, вступающих в окислительные реакции с активными ионами и радикалами и очищающего загрязненные газы до безвредного состояния.

Таким образом, заявляемая конструкция генератора холодной плазмы позволяет максимально снизить возможность пробоев пластины изолированного электрода и повысить надежность работы устройства.

1. Генератор холодной плазмы, характеризующийся тем, что содержит корпус, изолированный электрод в виде пластины из изоляционного материала с расположенным внутри металлическим проводником и тоководом, неизолированный электрод в виде металлической решетки, расположенный между изолированными электродами, при этом неизолированный электрод имеет углубление, расположенное напротив токовода изолированного электрода, изоляционный материал изолированного электрода имеет коэффициент теплового расширения, близкий к коэффициенту теплового решения металлического проводника, металлическая решетка неизолированного электрода состоит из горизонтальных проволок, между которыми расположены вертикальные проволоки с выступами и впадинами, причем выступы каждой последующей вертикальной проволоки расположены напротив впадин предыдущей вертикальной проволоки, плоскости, содержащие выступы крайних вертикальных проволок, расположены под углом от 15 до 60 градусов к плоскости неизолированного электрода.

2. Генератор холодной плазмы по п. 1, отличающийся тем, что коэффициенты теплового расширения изоляционной пластины изолированного электрода и металлического проводника отличаются не более чем на 20%.

3. Генератор холодной плазмы по п. 1, отличающийся тем, что пластина изолированного электрода имеет треугольный выступ в верхней части.

4. Генератор холодной плазмы по п. 1, отличающийся тем, что металлический проводник внутри пластины изолированного электрода может быть выполнен в виде сетчатой или перфорированной решетки.

5. Генератор холодной плазмы по п. 1, отличающийся тем, что углубление неизолированного электрода может быть выполнено в его верхней части и иметь форму полукруга.

Похожие патенты:

Изобретение относится к системам очистки воздуха с использованием электрического поля для поляризации частиц и материала и может использоваться в системах отопления, вентиляции и кондиционирования воздуха, автономных блоках фильтров или вентиляторах, а также в промышленных системах очистки воздуха.

Изобретение относится к области газоразрядной очистки газов и предназначено для использования в жилых и производственных помещениях. Устройство содержит корпус, изолированный электрод в виде пластины из изоляционного материала с расположенным внутри металлическим проводником и тоководом, неизолированный электрод в виде металлической решетки, расположенный между изолированными электродами. Неизолированный электрод имеет углубление, расположенное напротив токовода изолированного электрода. Изоляционный материал изолированного электрода имеет коэффициент теплового расширения, близкий к коэффициенту теплового решения металлического проводника. Металлическая решетка неизолированного электрода состоит из горизонтальных проволок, между которыми расположены вертикальные проволоки с выступами и впадинами. Выступы каждой последующей вертикальной проволоки расположены напротив впадин предыдущей вертикальной проволоки. Плоскости, содержащие выступы крайних вертикальных проволок, расположены под углом от 15 до 60 градусов к плоскости неизолированного электрода. Повышается надежность работы установки за счет обеспечения равномерной тепловой и электростатической нагрузки на элементы изолированного электрода при эксплуатации. 4 з.п. ф-лы, 6 ил.